An enclosed rotating floating photobioreactor (RFP) powered by flowing water for mass cultivation of photosynthetic microalgae

نویسندگان

  • Jim Junhui Huang
  • Gagarin Bunjamin
  • Edwin Sianguan Teo
  • Deric Boonhuat Ng
  • Yuan Kun Lee
چکیده

BACKGROUND The design of photobioreactor (PBR) for outdoor mass cultivation of microalgae determines the distribution of solar irradiance among cells in the culture, mode of agitation, mass transfer efficacy, and energy consumption, thus determines the productivity of the system and the cost of production. In this study, the concept of a floating photobioreactor with rotation function is proposed. Dunaliella tertiolecta, a model microalga, cultured in the attached vessels was evaluated. RESULTS The rotation of the photobioreactor was powered by flowing water, in this case waves generated through a paddle wheel in an outdoor raceway pond for proof of concept. The rotating floating PBR (RFP) could be powered by natural flowing stream, river, and tidal waves, thus there could be no energy cost for agitation of the cultures in maintaining the cells in suspension. This RFP is characterized by its energy-saving and temperature control properties as well as more homogenous light distribution in the culture as compared to conventional culture systems, such as raceway pond. Maximal cell concentration of 8.38 × 106 cells mL-1, biomass productivity of 3.10 g m-2 day-1, and photosynthetic efficiency of 4.61 % (PAR) were achieved. In addition, satisfactory productivities of D. tertiolecta metabolites including carotenoids, mycosporine-like amino acids and lipids were also obtained. CONCLUSIONS The RFP, powered by flowing water, creates an innovative culture technology for economical cultivation of microalgal cells and production of microalgal metabolites.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Continuous cultivation of photosynthetic microorganisms: Approaches, applications and future trends.

The possibility of using photosynthetic microorganisms, such as cyanobacteria and microalgae, for converting light and carbon dioxide into valuable biochemical products has raised the need for new cost-efficient processes ensuring a constant product quality. Food, feed, biofuels, cosmetics and pharmaceutics are among the sectors that can profit from the application of photosynthetic microorgani...

متن کامل

Semi-Continuous Cultivation of Photosynthetic Cells in a Flat Plate Photobioreactor

From an engineering point of view, the effect of light intensity distribution on the stability of growth rate should be taken into account in designing effective photobioreactors and sustaining stable growth rates. In the experiments described here, in order to keep operational parameters at an almost constant level, a semi-continuous culture method was developed for cultivation of photosynthet...

متن کامل

A novel horizontal photobioreactor for high-density cultivation of microalgae.

Microalgae are a promising source of biofuels and bioproducts, as they consume CO2 to grow, multiply quickly, and can be cultivated in wastewater and on marginal land. Development of low-cost and high-efficiency microalgal cultivation systems is important to the cost-competitiveness of algae. A floating horizontal photobioreactor (HBR) was developed that is inexpensive and scalable, as it is ma...

متن کامل

Site assessment for industrial mass cultivation of microalgae: case studies from Persian Gulf and Oman Sea coastal areas

Providing enough microalgae biomass is required for various applications in sectors such as food, medicine and energy. The biomass resources such as land, water, nutrient and carbon dioxide are essential in cultivation feasibility study for biomass production as well as cost benefits. The aims of this research is therefore, site assessment and prioritization of potential site locations, carbon ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 9  شماره 

صفحات  -

تاریخ انتشار 2016